Southwest Fisheries Center Administrative Report H-80-2

ESTIMATING MONK SEAL POPULATIONS USING CHANGE-IN-RATIO

AND LEAST SQUARES METHODS

Jerry A. Wetherall

Southwest Fisheries Center Honolulu Laboratory

National Marine Fisheries Service, NOAA
Honolulu, Hawaii 96812

DRAFT

February 1980



SUMMARY

This report describes some statistical methods for estimating the
size of monk seal populations using observations of hauled out seals
during the molting season. Two techniques are examined: (1) a change-
in ratio (CIR) technique and (2) a least squares (LS) method. The first
approach requires counts of the number of seals molting on each of a
series of beach surveys and counts of pre-molt and post-molt seals on
the first and last surveys of the series. The paper critically evaluates
past efforts at applying the CIR method to monk seal populations and
develops new estimators grounded in a stochastic model of molting
dynamics.

The general theoretical model also gives rise to a set of LS
estimators. They are based on a sequence of counts of molting seals.
Both the CIR and LS methods rely on auxiliary information, namely haul
out probabilities for different classes of seals and the probability

distributions for time spent in the pre-molt state and in the molt state.
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NOTATION
The following symbols and definitions will be adopted in describing

CIR and LS estimators and their variances. Throughout the paper,

a hat (") over a symbol signifies that the quantity is estimated. Some

symbols of lesser importance are not listed here but are defined

sufficiently in the text.

Total number of seals in the population, assumed constant during
the molting season.

Number of beach surveys conducted. On each survey all hauled out
seals are enumerated and classified as pre-molt, molting, or post-
molt.

The instant in time at which the ith survey is assumed to be
conducted, measured from the beginning of the molting season,
i=131, 2, ..., n.

Number of molting seals counted on ith survey, i =1, 2, ..., n.
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Number of pre-molt seals counted on the ith survey, 1
Total number of seals hauled out on the ith survey, 1 =1, 2, ..., n.
Number of molting seals in the population at time ty.

Proportion of non-molting seals at time ty which are in the pre-molt
state, 1 =1, 2, ..., n.

Probability that a molting seal is hauled out at time tys

Number of seals beginning molt in the time interval (ti—l’ ti),
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Number of seals completing molt in the interval (t ti)’

i-1

i=2, 3, ..., n.

Number of seals which began molting on the ith day of the

molting season, in a sample of w,k seals.

Probability that a seal is molting at time ti’ i=1,2, ..., n.

Probability that a seal begins molting in (ti—l’ ti)’ i=2, 3,
.5 N

Index of the last survey in a series of surveys contributing to

a CIR estimate.

Amount of time a seal spends in the pre-molt state, measured

from the beginning of the molting season (a random variable).

Amount of time a seal spends in the molting state (a random

variable).

Maximum value of y; i.e., maximum pre-molt time.

Maximum value of x; i.e., maximum molt duration.

Length of molting season.

Probability density function for x.

Probability density function for y.

Cumulative distribution function for x.

Probability that a seal completes 1ts molt exactly i days after

beginning it, i = 1, 2, ..., T.

Probability that a seal begins molting on the ith day of the .

molting season (at the beginning of the day). 1 =1, 2, ..., A.

Variance of a random variable or statistic.

Estimator of o2(-).
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Statistical weight.

Random error term (residual) for the ith

Base of natural logarithm

data point in LS model.



Footnote 1

CHANGE-IN-RATIO ESTIMATES
Eberhardt's Model

Basic CIR methodology is discussed thoroughly in Seber (1973). The
approach allows one to estimate the size of a population by knowing the
proportion of the population in a specified class at the beginning and
end of a time interval and the number of members added or removed from
that class and the other classes during the interval.

The application of CIR estimators to monk seals was suggested by
Eberhardt.l Assuming seals hauled out and observed during a survey were
identifiable as pre-molt, molting or post-molt, he developed an estimator
based on the proportions of non-molting seals in the post-molt class
during two beach surveys and the number of seals observed in the molting
class on all visits made in the intervening period . His approach assumes
that visits are timed in such a way that all seals molting during the
interval are observed and that none are counted more than once, or
alternatively, that during the interval the multiple counts are exactly
balanced by the number of molting seals not seen. He further assumes
that all molting seals are hauled out at the time of surveys and that all
non-molting seals haul out with equal probability when the first and last

surveys are conducted. Under these conditions his estimator is

L

z my + pL(ml - mL)

~ i=2

NE = + m
Pl Pr

1

where the symbols are defined in the previous section.



DeMaster's Model
Because such assumptions are likely to be violated in practice,
Footnote 2 DeMaster2 suggested a procedure to adjust the counts of molting seals
by dividing each count value by the expected number of times a molting
seal will be seen during the surveys and by u, the average haul out
probability for molting seals. DeMaster calls the first of these
constant divisors the 'bias." 1In essence, his adjusted CIR estimator

is

L m m, - mL
) Yy
u

DeMaster computed the bias under the following restrictive set of
assumptions:
(1) molt duration, x, ranges from 1 to 2I days, where I is a
fixed interval between successive surveys,
(2) x is "normally distributed,"
(3) pre-molt time, y, is uniformly distributed [DeMaster made this
assumption tacitly, but claims the results are not dependent

on the distribution of y].

Under these conditions it is easy to show that his results reduce to bias =
E(x)/I where E(*) is the expectation operator. This result requires that

y is uniform and, in his case, that surveys are conducted at a constant
interval, I. The distribution and range of x do not matter. DeMaster
seems unaware of these conditions, and neglects other difficulties as well.
For example, the bias factor is correct only for counts made at times t

i

such that T < ty < A, where A is the maximum time in the pre-molt state



and T is the maximum molt duration (in DeMaster's case T = 2I). Hence,
if the first (benchmark) survey is made at time tl, and the kth survey

is the first survey such that t, > T, then m,, m ces Mg should be

3’

excluded from the summation and the bias factor for m would be

k

E(x)/(tk - tl)' Counts on subsequent surveys would be corrected by the
usual bias factor, E(x)/I, subject to £y < A. TFor X <ty < A+ T the
bias term does not reduce to such simple expressions.

DeMaster suggested that an optimal survey design would result from
choosing I = E(x), but it is not clear why this would be so since, except
for the difficulties mentioned here, it is a simple matter to compute and
apply the bias factor. In any event, DeMaster's assumptions on the dis-

tribution of x actually result in bias = 1 regardless of I, so his

particular model is inapplicable except in the moot case when I = E(x).

A General Model

In most situations DeMaster's simple approach will not be satisfactory
because y will not be uniformly distributed and it may not be possible or
convenient to survey at regular intervals. What is needed is a more
general procedure that will permit greater realism and more flexibility
in survey design and analysis.

A general model can be constructed to accommodate any assumed distribu-
tions for x and y and any pattern of sampling. Let f(x) be the probability
density function for x and g(y) be the density function for y. The

molting season begins at time zero with all N seals in a pre-molt state

and progresses until all seals have completed molting and entered the



post-molt state. Assuming x and y are independent, the probability that

a seal is molting at time ti is

t,
i
m,o= g g(u) <l - F(ti - u))du

t.-u

i
where F(t, - u) = [ fx)dx.

0
The expected number of seals observed molting at the time of the ith

survey is just
E(mi) = uiﬂiN @))

where ui is the probability a molting seal is hauled out at t Further,

1
the expected number of seals beginning the molt between the previous

survey at t. . and the present visit is

t,
1

E(by)) =N [ g(u)du = No,
]

and the expected number of seals completing the molt in (ti—l’ ti) is

E(Ci) = — - " + E(bi) i=2,3,4, ..., n
Hica i
Given the sequence of counts of molting seals, ml, Myy Mgy -ees

and the auxiliary information on g(°¢), £(*), and p(*), the number of
seals beginning the molt and the number completing the molt in any

survey interval can easily be estimated:



n E(bi)

bi = mi<ml—)> E(mi) > 0 (2)
and mi_l mi

e, =x—-=+5, . (3)

oy oy

A pair of CIR estimators can now be derived:

L m
z bi + pL(ﬁ_l- - 7mrL-> o
A { = u
J=31 2 - Al L + :l (4)
pl - pL Ul
and
L m
~ ~ 1
Ze, =@ =-p)(—- !
i=2 1 L ]3 ﬁ m
ﬁ' = A ~ l L + —}_
Py =P 51

where Py is the proportion of non-molting seals at time ti which are

pre-molts. Note that N=1N. In the speclal case where y is uniformly
distributed,

m E(x) for Tt < A
and

m,
i
b, = ui((ti - ti_l)/E(x)>.
This removes the equal interval restriction of the DeMaster model, but
not its other shortcomings.

Another special case of the CIR arises when the n surveys span the

entire molting season, i.e., the first survey is at time zero and the

ath (Lth) survey is at time t > A+ T. In this event
n n
LZEMDbY= I E(ci) =N.
i=2 i=2

Further, p; = 1, pp = 0 and the CIR estimator at (4) reduces to

zZ>
I

L e e
o>

2
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This is akin to the Johnson's '"molt estimate," where the population size
is estimated by summing the unadjusted m, over the entire season. (This
simple procedure has apparently worked satisfactorily with the proper
choice of sampling interval, so that unobserved molting seals and multiple

counts of molting seals balance out over the season.)

For ease in computing the estimates of b it is convenient to

i’
approximate the continuous functions of E(bi) and E(mi) by discrete

probability functions and replace the integrals by summations. Thus

t.
i
m Loos
j=t
g - i-1
i t., t, t,-j+1
i i i
.4 Z g, - L g. L f
Hi=1 3 =13 k=1 K
where gj = probability that a seal begins its molt on the jth day of the
molting season (at the beginning of the day), j=1, 2, ..., A.

Hh
i

K probability that a seal completes its molt exactly k days
after beginning it, k = 1, 2, ..., T.

Variance Estimates and Confidence Intervals

We turn now to the precision of the CIR estimates, as measured by
Oé , the variance of ﬁ. The estimator ﬁ at (4) is a function of several
random variables, each with its own variance. The delta method and other
results may be used to combine these in an approximation of 0§ . Ignoring

all covariances, and replacing expected values by observations or

estimates, an approximation to Oé is

L
V(N) = Ay iz;z(bi) +A,V(m)) +AV(m ) +A, V() AV ) +AV(p) +A,V(p;)
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Here we use V(*) to denote an estimate of a sampling variance, ¢2(-).
0f the component variance terms, V(bi) requires further elaboration.
Using the same approximating techniques as above, V(%i) may be expressed

as a function of V(gi), V(%i), V(mi), and V(ﬁi) as follows:

VB = () WiV + Evm) + vim)V(E,))
mg \2
+<—£;—i-—2> {RVG) + V) + VEHVAE))

(%)
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1
where V(¢i) = 1 V(gj)
=ty g
and
. Ca110\2 s
;o t; X ty ) t, j+i . t; j+1 t; J+l
vir,) = I V(@E.)+ £A{g. =z V(E)Y+| T ¢ V(E.) +V(g,) T V()
e K™ \g=p K i 3 =1 k

To complete the estimation of V(ﬁ), some assumptions have to be made

about the distributions of the component random variables. A reasonable

set of assumptions may be the following:

(1)

(2)

(3)

V(mi) : The m, could be considered Poisson, hence V(mi) = mi.

Or, given the total count of seals on the ith visit, hi’ m could be

; m,

taken as binomial random variable in which case V(mi) = mi<l - E3:>
i

V(gi) : Both 51 and SL are binomial given the total counts of non-

molting seals on the first and Lth surveys. Thus

~ i
Vp) = = |1 - T
* <P' - m.>2 by =My
i i
th
where r, = number of pre-molt seals counted on i survey.

i

Here we assume pre-molt and post-molt haul out probabilities are

the same on the first survey, and also on the Lth survey.

V(ﬁi) : Presumably the haul out probabilities for molting seals
are estimated from sampling binomial distributions also. Thus
m m

V(i) =(:§X1 - E-i—)
i

where s; = total population of molting seals at time ty
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(4) V(@i) and V(?i) : Elements of the probability distributions for
pre-molt time and duration of molt are presumably estimated by
sampling multinomial populations. Thus the ith element of the

pre-molt time distribution is estimated as

. w
1%
w.

A Yy Yy
with estimated variance V(gi%=<-j£X? - ar—), i=1, 2, ..., A
w L2

where w, = number of seals beginning their molt on the ith day of
the season. Similar equations would apply to %i and V(%i),

i=1, 2, ..., T.

Approximate  95% confidence limits on N may be computed in the

A
usual manner, assuming normality of N, as

A A Y.
N + 2v(N) 2.

LEAST SQUARES ESTIMATES
The general model of molting dynamics leads to other estimators
besides the CIR. 1In particular, Equation (1) immediately suggests a

set of moment estimators for N, namely
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However, since each survey produces a separate estimate the question now
is how best to combine the n estimates. An intuitively obvious

procedure would be to simply take the arithmetic mean of the ﬁi’ i.e.,

Another approach leading to the same result is to consider a simple
least squares criterion, i.e., choose N as the value of N which minimizes

n
2
S = iElwi<mi - E(mi)) (5)

where Wy is a statistical weight to be specified. This model assumes

additive error, i.e., m, = uiﬂiN + €y where the Ei are independent
random errors with zero mean and covariance matrix W—lcé and W is a
diagonal matrix of the weights. The general solution to (5) is

W Hymy

[ o =]

e =

2
wi(uirri)

i=1

Some special cases of interest may be obtained directly using the results

in Draper and Smith (1966, p. 80-81) or other standard statistical texts.

-2
Among these is the case where Wy is assumed proportional to (uiﬂi) s

and this is

n m

e

SO M A S
n n

as in the intuitive estimate above.
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The variance of N may beestimated by

n 0 A2
A i=1
VN) = n(n - 1)

Another set of least squares estimators is appropriate when the
el

error is multiplicative, i.e., when the model is m, = uiﬁiNe

In this event

]
1nmi = lnN + ln(uiﬂi) + €

1
where € is independently distributed with mean zero and covariance matrix

'—
W 102, . Now the least squares estimate of InN is found by minimizing
€

t n ' 2
S = E wi(lnn%. - (InN + ln(uiwi))) .

i=1

The general result is

When the variance of my is proportional to (uiﬂi)z as in the special case
discussed above, it is well-known that a logarithmic transformation will
stabilize the variance so equal weighting will be appropriate in the
logarithmic model. HKence in this special case,

n mi

n
- 5 1n(u - ) I Inf,
{aN = i=1 i'i - i=1
n n
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with estimated variance

N 2
<lnﬂi - lnN)

V(lnN) = Y S .

[ e =]

The corresponding estimate of N is

i.e., the geometric mean of the individual /I:Ii.

When the additive model is employed, confidence limits on N may be

estimated assuming normality of N. Approximate 957% confidence limits

A1
then are f + 2V(N) /2 .  When the multiplicative model is used, confidence

limits for N may be constructed by transforming limits for InN. Thus

AN
if InN is normally distributed, approximate 95% confidence limits on N

* 42 1/\ e
are N e V(1nN) .
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NUMERICAL EXAMPLES
To demonstrate the use of the estimation techniques, consider the

following hypothetical set of survey observations:

! bt il L ict
1 0 56 56 0
2 8 49 48 1
3 16 47 46 1
4 24 58 57 0
5 32 61 57 3
6 40 47 43 2
7 48 51 40 7
8 56 61 45 5
9 64 70 49 11
10 72 74 41 16
11 80 77 30 18
12 88 75 28 9
13 96 81 25 11
14 104 62 16 7
15 112 69 15 12

16 120 67 7 9
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In addition to this set of survey observations it is assumed from other

studies that the probability functioms for pre-molt time and molt

duration are as follows:

(0.
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It is further assumed that at times ty and t11 the pre-molt and post-molt

seals are hauled out with equal probability. This gives

A - 96
P1 =55 -0~ 10
and
A oA _ 30 -
Py = P11 T 77 - 18 0.5085 .

In addition, it is known that My = 0.91 for all i. Under these conditions

the following basic statistics are computed:

i T b 5 5 e
2 0.00358 0.0040 307 1.2 0.1
3 0.00441 0.0045 249 1.1 1.1

4 0.00767 0.0080 -
5.4 3.2

5 0.01262 0.0128 261
6 0.02634 0.0272 83 2.3 3.4
7 0.03979 0.0404 193 7.8 2.3
8 0.06093 0.0624 90 5.6 7.8
9 0.08451 0.0860 143 12.3 5.7
10 0.10713 0.1096 164 18.0 12.5
11 0.10218 0.1046 194 20.2 18.0
12 0.09931 0.1016 100 10.1 20.0
13 0.06843 0.0698 177 12.3 10.1
14 0.05787 0.0592 133 7.9 12.3
15 0.06381 0.0655 207 13.5 8.0

16 0.06490 0.0664 152 10.1 13.4
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Change-in-Ratio Estimates
To compute the CIR estimates we use statistics for i = 2, 3,

On the fourth survey m, = 0, so we derive a combined estimate of the

L ]

11.

quantity (b4 + bS) which is (3) (0.0080 +0.0128)/(0.01262) (0.91) = 5.4.

Also we estimate (c4 + cs) by (1/0.91) - (3/0.91) +5.4 = 3.2,

The CIR estimate of N based on the bi is

73.9 - (0.5085)(——l§-—>
. 0.91/, ,
1.0 = 0.5085

_73.9 - 10.0582
0.4915

129.9 .

The corresponding estimate based on the cy is

54.1 + (0.4915)(—3§~)
_ 0.91) , ,
0.4915
54.1 + 9.722
= T 0.4915

129.8

which shows that ﬁ and ﬁ' are identical.

-

An updated version of this paper will
include variance estimates and
confidence limits based on the CIR

methodology.
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Least Square Estimates
Based on the 14 individual estimates of N, the additive error model

yields

14
I N

[y

with variance estimate
V(N) = 311.87 .

So 95% confidence limits on N are 139.9 and 210.5.

The multiplicative model gives an estimate of

14 Yl
N* =< I Ni> = 163.4
i=1

with 957 confidence limits on N of 132.3 and 201.9.
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